Code No: 154AQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, April/May - 2023 DISCRETE MATHEMATICS (Common to CSE, IT, ITE, CE(SE), CSE(CS), CSE(N))

Time: 3 Hours

Max. Marks: 75

(25 Marks)

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

$\mathbf{PART} - \mathbf{A}$

		(20 11 11 11 11 1)
1.a)	Define Tautology with suitable example.	[2]
b)	Write contra positive of the conditional statement:	
、 、	P: 2+2=4, q: I am not the Prime Minister of India.	[3]
c)	Define binary relation .	[2]
d)	If $A = \{\alpha, \beta\}$, $B = \{1, 2, 3\}$. Find out (AxB) U (BxA) and (AxB) \cap (BxA).	[3]
e)	What is recursive algorithm?	[2]
f)	Write the Principle of Mathematical Induction.	[3]
g)	Write Fibonacci Recurrence Relation.	[2]
h)	What is inclusion-exclusion?	[3]
i)	What is planar graph?	[2]
j)	Define shortest path algorithm.	[3]
	PART – B	
	rARI – D	(50 Marks)
		(SU Marks)
2 ~)	Prove that $(\mathcal{D}(x)) \cap (\mathcal{D}(x)) \rightarrow (x) \mathcal{D}(x) \setminus (\neg x) \mathcal{D}(x)$	
2.a)	Prove that $(\forall x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$	
b)	Show that $r \land (p \lor q)$ is a valid conclusion from the premises	[6 6]
	$(p \lor q), (q \to r), (p \to m) \text{ and } (\sim m).$	[5+5]
2 -)	OR Varify the filler incompany is welled by translating into symphole and well	n a milan af
3.a)	Verify the following argument is valid by translating into symbols and usin inference	ng rules of
	If Clifton does not live in Franc, then he does not speak French	
	Clifton does not drive a Datsum	
	If Clifton lives in France, then he rides a bicycle	
	Either Clifton speaks French, or he drives a Datsun	
	Hence, Clifton rides a bicycle.	
b)	Show that $r \land (p \lor q)$ is a a valid conclusion from the premises	
0)	($p \lor q$), ($q \to r$), ($p \to m$) and ($\sim m$).	[5+5]
	$(p \lor q), (q \lor r), (p \lor m)$ and $(em).$	
4.	Show that congruence modulo m is an equivalence relation on integers. OR	[10]
5.a)	If R is a relation on a set A, then R is transitive if and only if $R^2 \subseteq R$	

5.a) If R is a relation on a set A, then R is transitive if and only if R² ⊆ R
b) Consider the following relation on{1,2,3,4,5,6}, R = {(i, j): |i - j| = 2} Is R transitive? Is R reflexive? [5+5]

Download all NOTES and PAPERS at StudentSuvidha.com

R18

6.a) S	Suppose the postal department prints only 5 and 9 cent stamps. Prove that it is possible
to	to make up any postage of n cents using only 5 and 9 cent stamps for $n \ge 35$.

Give a recursive definition of the: i) the set of even integers ii) the set of positive integers b) congruent to 2 modulo 3. iii) the set of positive integers not divisible by 5. [5+5]

C (1

· · · · ·

OR

7.a)	Give a recursive algorithm for finding the sum of the first n positive integers.	
b)	Use mathematical induction to prove that the statement	[5+5]
	$x - y$ is a factor of polynomial $x^n - y^n$	

8. Solve the recurrence relation of the Fibonacci series of numbers. [10]

OR

- Use generating functions to solve the recurrence relations 9. $a_r = a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ [10]
- Show that a graph K_n has a Hamiltonian cycle whenever $n \ge 3$ 10.a) Show that K_5 is an Euler's circuit and also Hamiltonian cycle. b) [5+5]

OR

11. Verify whether the graphs G and G1 are isomorphic or not. Explain the reason. [10]

